
Abstract. Hybrid potentials have become a common
tool in the study of many condensed-phase processes
and are the subject of much active research. An impor-
tant aspect of the formulation of a hybrid potential
concerns how to handle covalent bonds between atoms
that are described with different potentials and, most
notably, those at the interface of the quantum mechan-
ical (QM) and molecular mechanical (MM) regions.
Several methods have been proposed to deal with this
problem, ranging from the simple link-atom method to
more sophisticated hybrid-orbital techniques. Although
it has been heavily criticized, the link-atom method has
probably been the most widely used in applications,
especially with hybrid potentials that use semiempirical
QM methods. Our aim in this paper has been to evaluate
the link-atom method for ab initio QM/MM hybrid
potentials and to compare the results it gives with those
of previously published studies. Given its simplicity and
robustness, we find that the link-atom method can pro-
duce results of comparable accuracy to other methods as
long as the charge distribution on the MM atoms at the
interface is treated appropriately.

Keywords: Quantum mechanical/molecular mechanical
hybrid potentials – Ab initio quantum chemistry – Link
atoms

1 Introduction

Hybrid or combined quantum mechanical (QM)/molec-
ular mechanical (MM) potentials are well adapted for
the study of reactions and other processes in large
systems. They work by treating the potential of a small
region of the system – the region of interest – with a
high-precision QM method and the rest of the system –

the environment – with less-precise QM methods or
empirical MM potentials. Probably the main impetus for
the development of hybrid potentials was the desire to
simulate reactions in enzymes but they have been applied
in other areas as well, notably in solution and surface
chemistry [1, 2, 3].

The principal problem in devising a hybrid potential
is how to formulate the interactions between regions
described with different potentials. For cases where there
is one QM and one MM region, there will be non-
bonding (electrostatic and, perhaps, Lennard-Jones)
interactions between the QM and MM atoms. These are
relatively straightforward to deal with. In many situa-
tions, however, it is necessary to split a molecule between
QM and MM regions, which means that there will be
covalent bonds between QM and MM atoms. These
‘‘dangling’’ bonds must be treated in some way because
the presence of broken bonds and unpaired electrons at
the boundary of the QM region dramatically changes the
electronic structure of the QM system.

Although many different models have been developed
to deal with covalent bonds at the interface, they can be
broadly classified into two types. One class, which we
denote as link-atom methods, introduces an extra atom
– most often a hydrogen atom – along the broken QM–
MM (single) bond at an appropriate distance from the
QM atom. The link atom is treated quantum mechani-
cally and serves to sate the unsatisfied valence of the QM
atom. The bond itself between the QM and MM atoms
is described molecular mechanically. The link-atom
method is simple and because of this it has been the most
widely used method, especially with semiempirical QM/
MM hybrid potentials. It has, however, been criticized
on a number of counts, not the least of which is the
necessity of introducing extra, unphysical atoms into the
system, one for each broken bond.

The second class of approaches are the hybrid-orbital
methods, a version of which was used in the first hybrid
potential study of an enzyme reaction mechanism by
Warshel and Levitt [4]. These methods work by gener-
ating a set of hybrid orbitals on the QM atom which has
the broken bond. Only orbitals pointing to other QM
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atoms are included in the QM calculation, whereas
orbitals pointing to MM atoms are kept frozen. Hybrid-
orbital approaches are elegant, because no unphysical
atoms need be introduced, but their formulation and
implementation are significantly more complex than for
the link-atom methods.

Many groups have worked on these various classes
of techniques both for semiempirical and ab initio
QM/MM hybrid potentials. Thus, for example, hybrid-
orbital methods have been developed by Rivail and
coworkers (the local self-consistent-field (LSCF) meth-
od) [5, 6, 7, 8, 9], by Gao and coworkers (the generalized
hybrid orbital method) [10, 11], by Friesner and co-
workers [12, 13, 14] and by Kairys and Jensen [15]. Other
groups have worked on link-atom methods, including
Singh and Kollman (the junction dummy atom method)
[16], our laboratory [17, 18], Karplus and coworkers [19,
20, 21], Eichinger et al. (the scaled-position link-atom
method) [22], Eurenius et al. [23] and Nicoll et al. [24].
Other types of methods which are closely related to the
link-atom approach are the adjusted connection atom
model of Antes and Thiel [25], the pseudobond model
of Zhang et al. [26], the integrated molecular orbital
MM method of Maseras and Morokuma [27, 28], the
harmonic cap method of Corchado and Truhlar [29] and
the quantum capping potential of DiLabio et al. [30].

In a previous study from our laboratory, a version
of the link-atom model developed for semiempirical
QM/MM hybrid potentials was described [18]. The
purpose of the present study is to see how this model
must be modified for use with ab initio QM/MM hybrid
potentials and to assess its accuracy in given situations
against that of other published ab initio QM/MM
models. One of our principal aims has been to seek a
widely applicable, simple model that requires as little
parameterization as possible.

The outline of the paper is as follows. Our version of
the link-atom method is described in Sect. 2, the results
of tests using the method are presented in Sect. 3 and
Sect. 4 concludes.

2 The link-atom method

The link-atom method that we investigate in this paper is the same
as the one described for the semiempirical QM/MM hybrid po-
tential in Ref. [18], except for the way in which the electrostatic
interactions at the interface of the QM and MM regions are han-
dled. As full details of the method are given there, we shall only
provide a brief outline of the general scheme before going on to
detail the differences.

Consider the case of a system divided into two regions, one QM
and one MM. The potential energy, E, of this system can be written
as a sum of three terms:

E ¼ EQM þ EMM þ EQM=MM ; ð1Þ

where EQM and EMM are the energies of the QM and MM regions,
respectively, and the energy EQM=MM contains the terms responsible
for the interaction between the two regions. The latter will contain
terms for the nonbonding (electrostatic and Lennard-Jones) inter-
actions between QM and MM atoms as well as the terms that we
are concerned with here and which are necessary for the treatment
of the covalent bonds across the QM/MM interface. It is worth
emphasizing that, in general, EQM (and also EMM for nonpairwise
additive force fields) will not be equivalent to the energy of the

isolated QM subsystem because the charges of the MM atoms will
polarize the QM charge distribution and so give a modified energy.

A schematic of the link-atom method that we employ is shown
in Fig. 1. For each broken bond between a QM atom, Q, and an
MM atom, M, across the interface, we add a link atom, L, along
the covalent bond between Q and M. We always use a hydrogen as
the link atom, although other elements have also been tried [25, 26],
and, for reasons previously explained [17], we partition the system
so that only unconjugated single bonds are broken at the interface.
In our programs, the two atoms L and M are not independent but
together constitute what we call a boundary atom, B.

The boundary atom, B, is treated using both QM and MM
potentials. L is the QM part of B, and enters the QM calculation
(as a hydrogen), whereas M is the MM part. Only the coordinates
of M are ever stored and those of L are constructed, whenever
they are needed, by placing L at an appropriate, fixed, distance
from the atom Q along the Q–M bond. This distance is a parameter
which is chosen at the start of the calculation although we normally
use values of 1.1 Å if Q is a carbon and of 1.0 Å if it is a nitrogen or
an oxygen. As the coordinates of L are expressible as an analytic
function of those of Q and M it is straightforward to transfer any
forces on L to Q and M using the chain rule. This way of handling
the link atom has the great advantage that there is no need for users
to add extra atoms as link atoms or to employ constraints to keep
the link atoms in reasonable configurations because this can be
easily done automatically by the program. It should be noted that
Eichinger et al. independently derived a similar approach [22].

As already mentioned, the atom L enters the QM calculation
but it remains to specify exactly how L and M interact with the
other atoms in the system. A complete specification of which in-
teractions are calculated for all atoms is given in Table 1. The terms
involved in these interactions are of three types – covalent MM
terms, nonbonding MM Lennard-Jones interactions and electro-
static interactions. For the covalent terms, we follow the scheme of
Eurenius et al. [23] and exclude all covalent MM interactions
(bonds, angles, dihedrals, etc.) which involve only QM atoms or
boundary atoms. The sole exceptions to this are bond terms be-
tween QM and boundary atoms (i.e. bonds of type Q–M) which
must be kept. The Lennard-Jones interactions involving the atom
M are dealt with as in a normal MM calculation and this atom
retains its usual Lennard-Jones parameters. In contrast, atom L
has no Lennard-Jones terms.

Up to now, the scheme we have presented is the same as the one
published previously [18]. The differences reside in the electrostatic
interactions. In our semiempirical hybrid potential, we normally

Fig. 1. The link-atom scheme for the case of an amino acid in a
protein whose side chain is treated as quantum mechanical (QM)
and the protein backbone as molecular mechanical (MM). The
partitioning occurs across the Cb–Ca bond where Cb is QM (Q) and
Ca is MM (M). The link atom is denoted L, whereas B refers to
the boundary atom which comprises both L and M
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include all electrostatic interactions between QM atoms and the
MM atoms’ partial charges except for those between the MM at-
oms and the atom L. This exclusion has caused some debate [20]
but, in our tests, we have seen little advantage to adding these
terms, especially as it becomes necessary to change the value of the
covalent MM terms for the bonds of type Q–M at the interface so
as to maintain reasonable bond distances.

In contrast, however, we thought it worthwhile to investigate
more consistent approaches for an ab initio hybrid-potential
link-atom model. To this end we have developed a simple model in
which all electrostatic interactions between QM (including link
atoms L) and MM atoms are calculated but in which the charge
distributions of MM atoms adjacent to boundary atoms and
the MM parts of the boundary atoms themselves (atoms M)
are represented by Gaussians instead of the usual d functions. Thus,
the charge distribution, qMM, of an MM atom can be written as

qMMðrÞ ¼ qMM exp � r� rMM

rMM

� �2
" #, ffiffiffi

p
p

rMM

� �3
; ð2Þ

where qMM, rMM and rMM are the charge, width and center of the
Gaussian distribution, respectively, and r is the position. The choice
of a Gaussian form for the charge distribution is arbitrary, but
expedient, and serves to soften the interactions between atoms
which are only a short distance apart. In practice, it only proved
necessary to use these smoothed charge distributions for the MM
parts of the boundary atoms (atoms M) and for the MM atoms
directly bound to them. In what follows, we shall denote the
Gaussian-width parameter used for the charge distribution of the
atoms, M, as r1 and that for the MM atoms bound to them as r2.
Values of zero indicate that no smoothing has been performed and
so the charge distribution is a d function.

Before terminating the discussion of our method, we feel that it
should be put in perspective with other work on ab initio hybrid
potentials. The idea of using smeared charge distributions for the
MM atoms has been suggested by others in the context of link-
atom methods [22, 23, 24] but, to our knowledge, no comprehensive
test of its effectiveness has, as yet, been presented in the literature.
Other groups, who do not smooth the MM charge distribution at
the interface, have resolved the problem of large QM/MM inter-
actions in the link-atom region by simply zeroing the charges on the
MM atoms [19, 23, 26] but this appears to us unsatisfactory as
important electrostatic interactions could be missed.

The link-atom method described has been put into an ab initio
hybrid-potential version of the DYNAMO program [31]. Implemen-
tation is straightforward and requires little modification of the parts
of the program that deal with the calculation of the QM and MM

energies. Derivatives of the energy – in particular the forces – are also
easy to implement and may be determined analytically. For the tests
in this paper, the QM calculations were performed at the Hartree–
Fock (HF) level using either a 3-21G or a 6-31G* basis set [32] and
the OPLS-AA force field was employed as the MM potential [33]. It
is our normal strategy to use the terms from a force field unchanged
in our hybrid potentials. The only exception to this is that, for certain
QM/MM partitionings, it is necessary to modify the charges on the
MM atoms at the QM/MM interface so as to maintain zero or
integral charge in the MM region. In the tests presented here, this
was not required and so all parameters were taken directly from the
OPLS-AA force field. Minimizations were performed using a
Broyden–Fletcher–Goldfarb–Shanno algorithm [34]. Although we
report only HF results, the comparisons we obtain between the full
QM and hybrid QM/MM results are very similar when we perform
density functional theory calculations with the same basis sets and
the BLYP or B3LYP functionals [35].

3 Results

In this section we present the results of calculations for
various parameterizations of our link-atom method. A
criticism that we have of other work done in this area,
with one or two notable exceptions, is that tests of
link-atom or hybrid-orbital methods are done using
only a very small number of model systems. To avoid
falling into the same trap, we have gathered together as
comprehensive a series of tests as possible, including
many that have been used by other workers in the field.

Full details of our calculations are given later but
we found that six parameterizations of our link-atom
method were useful, two models with Gaussian
smoothing that were representative of all those that we
tried, and four point-charge models that we employed
for comparison purposes (even though some of them
did not give very good results). For convenience, we
summarize them here:

LAg(4,0) A Gaussian smoothing model with ðr1; r2Þ =
(4.0 Å, 0.0 Å) (i.e. smoothing is only used for the
atoms M).

LAg(4,3) A Gaussian smoothing model with ðr1; r2Þ =
(4.0 Å, 3.0 Å) (i.e. smoothing is used for the atoms M
and their first neighbors).

LAf A point-charge model in which all QM/MM
electrostatic interactions are calculated.

LA As for model LAf except that the electrostatic
interactions that occur within each boundary atom B
between the nuclei of atoms L and the MM charges
of atoms M are omitted.

LA0 As for model LA, except that the MM charges of
the boundary atom and the MM hydrogens to which
it is bound are set to zero.

LA0
0 As for model LA, except that the MM charges of
the boundary atom and the MM hydrogens to which
it is bound are excluded from the QM calculation. In
other words, they interact with other MM charges
but not with the QM atoms.

3.1 Ethane

As our simplest test, we started with ethane, which nicely
illustrates the need for a proper treatment of the
electrostatic interactions. In all cases, one methyl group

Table 1. A summary of the different interaction terms calculated
between quantum mechanical (QM) and molecular mechanical
(MM) atoms in our hybrid potential. In this table, QM in the
columns atom set 1 and atom set 2 refers to an atom in the QM
region, other than those of type Q and L, whereas MM refers to an
atom in the MM region, other than those of type M. The atom L
has no MM interactions and only interacts electrostatically with
other atoms in the system. Note that calculation of the QM/MM
Lennard-Jones interactions includes nonbonding exclusions,
whereas calculation of the QM/MM electrostatic interactions does
not (meaning all interactions are determined)

Interactions Atom set 1 Atom set 2

Self interactions
MM/MM MM + M MM + M
QM/QM QM + Q + L QM + Q + L

Hybrid QM/MM interactions
Bonds Q M
Angles, dihedrals and
impropers

QM + Q + M MM

Lennard-Jones QM + Q MM + M
Electrostatics QM + Q + L MM + M
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was treated as QM, at the HF/6-31G* level of theory,
and the other methyl group as MM with the OPLS-AA
force field. The geometries of ethane with each different
link-atom model were optimized and the dipole and the
vibrational frequencies of the resulting structures were
determined.

Take first the results of calculations in which no
charge smoothing is applied and the MM charges are
point charges. For model LAf, in which all electrostatic
interactions between QM and MM atoms are calculated,
the structure collapses. This is due to the very short
range interaction between the link-atom (atom L) nu-
cleus and the MM charge on atom M. If this interaction
is excluded (to give model LA), the structure optimizes
but the C–C bond is much too long at 1.670 Å and the
dipole moment of the molecule has a value of 0.733 D.
This situation is reminiscent of that observed for semi-
empirical hybrid-potential link-atom models [20]. Zero-
ing the charge of the MM atoms (to give model LA0)
greatly improves the situation as the QM calculation
is equivalent to that of a (slightly-distorted) methane
molecule. The C–C bond now has a length of 1.530 Å,
compared to the pure HF/6-31G* and OPLS-AA values
of 1.527 and 1.531 Å, respectively. The dipole moment is
also much smaller at 0.006 D.

The use of Gaussian charge distributions also gives
good results. For ethane, it is only necessary to make the
charge distribution of the MM methyl group carbon a
Gaussian as the results are insensitive to the widths of
the Gaussians on the MM hydrogens. Good values of
the C–C bond length and the ethane dipole moment are
found for r1 values ranging from 3.5 to 6.0 Å, but below
this the C–C bond length becomes too short and the
dipole moment is too large. Remaining aspects of the
structure are also in good agreement with the pure
QM or MM results. The angles are accurate to within
0.2–2.0� which is comparable to the results found by
Reuter et al. [20] at the semiempirical level and slightly
better than those of the LSCF method.

The vibrational frequencies of ethane in the range
800–1700 cm�1 are shown in Fig. 2. The experimental,
hybrid-potential, pure QM and pure MM values are
illustrated. Two levels of QM theory were used for the
hybrid-potential and the pure QM calculations and the
LAg(4,3) parameterization was employed with the hy-
brid potential. We show only unscaled frequencies as our
principal interest is not the accuracy of the calculated
results compared to experiment but how the hybrid-
potential results compare to the pure QM or MM val-
ues. The main result is that the hybrid-potential results
are intermediate between the pure QM and MM values
(although for the most part nearer to the MM results),
indicating that the link-atom method introduces no
undue distortions in the values of the frequencies
(particularly that of the C–C bond). Similar results were
reported in Ref. [22] but, in contrast to that work, we do
not adjust any of the hybrid potential’s MM parameters.

3.2 Butane

Geometry optimization of the butane molecule with the
hybrid-potential model, in which half the molecule is
treated as QM and the other half as MM, gives similar
results to that of ethane. Thus, the model LA gives a
central C–C bond that is much too long (no matter what
the QM method used) but this is redressed in the model
LA0 in which the charges on the MM CH2 group
adjacent to the broken bond are set to zero. Good
structural results are also obtained with both Gaussian
charge models.

Adiabatic energy profiles for rotation about butane’s
central C–C bond, calculated with pure QM, pure MM
and hybrid-potential methods, are shown in Fig. 3, and
the energies of certain structures, relative to the most
stable structure (which has a C–C–C–C torsion, /CCCC,
with a value of 180�) are listed in Table 2. The curves for
the pure QM and pure MM results are both very similar.

Fig. 2. The vibrational spectra of ethane in the
range from 800 to 1700 cm�1. The experimental
results are shown together with values determined
from full QM calculations (the HF/3-21G and HF/
6-31G* methods), from the corresponding hybrid
potential using the LAg(4,3) link-atom model and
from full MM (OPLS-AA) calculations
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The profile for the LA model is also in good agreement
except near the secondary minimum (/CCCC 	 60�)
where there is an error of about 2 kJ mol�1. Zeroing the
charges on the MM CH2 group adjacent to the central
C–C bond (via either model LA0 or model LA0

0) does
not help matters as the whole curve moves away from
the QM and MM results. A similar tendency is found for
the LAg(4,0) model. In contrast, smoothing the charge
distributions of the MM atoms one bond away from the
central C–C bond by using the LAg(4,3) model produces
the best results compared to the QM and MM curves.

3.3 Dipole moments

To test the ability of our models to reproduce dipole
moments, we geometry-optimized a set of 12 molecules
using each of our hybrid-potential models and compared
their geometries and dipole moments to those obtained
with full QM calculations. The calculations were per-
formed with both the HF/3-21G and HF/6-31G* QM
methods. The results are presented in Table 3.

The differences in the geometries, given by the root-
mean-square (RMS) error in Table 3, are small and
range from 0.04 to 0.14 Å. Except for the long bond at
the QM/MM interface, the structures are well repro-
duced by the LA model with a total RMS deviation of

0.08 Å and 0.04 Å for the HF/3-21G and HF/6-31G*
QM methods, respectively. The RMS error for the ge-
ometries is somewhat higher for the other models and
goes up to 0.14 Åfor the LAg(4,3) model with the HF/
3-21G QM method. This large value is caused by three
molecules of the subset for which the RMS error ranges
from 0.3 to 0.8 Å and which is due to differences in
hydrogen positions. The RMS dipole error, which is
about 1.08 D for the LA model, is reduced if the charges
on MM atoms are zeroed (in the models LA0 and LA0

0)
and is reduced even further if charges are smoothed.
The lowest RMS dipole errors are about 0.6 D and are
obtained with the LAg(4,0) and LAg(4,3) models with
the HF/6-31G* QM method.

Table 3 presents results for cases in which the QM/
MM partitioning leads to an ethyl group being treated as
MM. As expected, partitioning the system further away
from the functional group and putting only a methyl
group in the QM region reduces the error significantly.
Thus, the RMS dipole errors for the LAg(4,0) and
LAg(4,3) link-atom models with the HF/6-31G* QM
method fall to 0.20 and 0.31 D, respectively, whereas
the RMS errors in the geometries become 0.05 and
0.01 Å.

3.4 Proton affinities

The results of proton affinity calculations for a series
of alcohols, carboxylic acids and amines are listed in
Table 4. Both the HF/3-21G and the HF/6-31G* QM
methods were used. The proton affinities were calculated
as the differences in energies between the geometry-
optimized protonated and unprotonated forms of the
molecules. For each molecule, the link-atom calculations
were performed with various partitionings so that the
effect of increasing the size of the QM region could be
assessed. The results with the model LA are not given
because, although the values of the proton affinities are

Fig. 3. The torsional barrier of butane about its
central C–C bond calculated with full QM, full
MM and a variety of link-atom method parame-
terizations. HF/6-31G* was the QM method used
for the full QM and hybrid-potential calculations

Table 2. Energies of different conformations of butane taken from
the torsional barriers of Fig. 3 (except for those of model LA0). All
energies are given relative to those of the structures with C–C–C–C
dihedral angles (/CCCC) of 180 �. Angles are in degrees and energies
are in kilojoules per mole. HF/6-31G* was the QM method used
for the pure QM and hybrid-potential calculations

/CCCC 6-31G
 OPLS-AA LA LA0 LAg(4,0) LAg(4,3)

0 25.9 25.3 25.4 28.2 28.9 24.7
60 4.2 4.9 6.1 7.0 6.9 4.3

120 15.0 15.1 14.9 16.4 16.1 15.3
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sometimes reasonable, the C–C bond distance between
the QM and MM regions is always much too long.

The maximum differences between the link-atom and
the full QM results are about 44 kJ mol�1 if one CH2

group is treated as QM, 25 kJ mol�1 if there are two QM
CH2 groups and 13 kJ mol�1 if there are three QM CH2

groups, in addition to the functional group. These re-
sults confirm those of previous studies [11, 17] which
indicate that cutting too close to the functional group
gives poorer energetics and also confirm the common
received wisdom when performing hybrid-potential cal-
culations that a molecule should be partitioned at least
two bonds away from the chemical group of interest.
Even though the energetics of the models with the
smaller QM regions may be inaccurate, the structures
are close to the full QM results. Thus, for example, the
proton affinity for CH3(CH2)2CH2OH is in error by
36.3 kJ mol�1 with the LAg(4,3) model and the HF/6-
31G* QM method but this error drops to 3.9 kJ mol�1 if
full QM calculations are done on the structures obtained
with the link-atom method. This means that it could be
appropriate in some circumstances to do hybrid-poten-
tial geometry optimizations with a small QM region
followed by single-point hybrid-potential calculations
with more QM atoms.

In their development of a link-atom model for an
ab initio hybrid potential, Nicoll et al. [24] calculated
proton affinities for various amino acids and presented
the results for two of them, serine and histidine. The
differences in the proton affinities that they obtained
between their hybrid-potential and full QM HF/6-31G*
results were 49.8 kJ mol�1 for SerHc ! Ser� and
�21.0 kJ mol�1 for HisHþ

� ! His. We repeated their
calculations using our LA0, LAg(4,0) and LAg(4,3)
hybrid potentials and the same QM method. In these
calculations, the side chain of the amino acid was in the
QM region and both the protonated and unprotonated
forms were fully optimized. Unlike Nicoll et al. no
adjustment or reparameterization of the MM charges
had to be done upon partitioning, owing to our use of
the OPLS-AA force field. The importance of a good

model for the charge distribution at the interface
is confirmed by the bad performance of the LA0

model, which gives energy differences of �160.4 and
�92.4 kJ mol�1 for serine and histidine, respectively.
Significant improvements are obtained with the LAg(4,0)
model, which gives energy differences of �82.0 and
�33.2 kJ mol�1, respectively, and these reduce even
further to 1.2 and �20.1 kJ mol�1 with the LAg(4,3)
model. In spite of the good result for serine, it should be
pointed out that the size of the QM region is inadequate
and that, in actual applications, a partitioning further
away from the serine oxygen should be employed.

In a slightly more recent paper, DiLabio et al. [30]
also tested their quantum capping potential on the
protonation energy of the N� of histidine (although with
a terminating COOH group instead of a COH as in the
previous example). The differences in the proton affini-
ties between their hybrid potentials and the full QM HF/
6-31G(d) results range from about 5 to 11 kJ mol�1,
depending on the capping model they use. In contrast,
we obtain errors of 40.3 and 17.3 kJ mol�1 with our
LAg(4,0) and LAg(4,3) link-atom models, respectively.

Finally in this section, we determined the effect of an
external charge on proton affinities using tests similar to
those performed by Reuter et al. [20], who studied the
influence of a sodium ion on the proton affinity and the
deprotonation enthalpy (DPE) of propanol with semi-
empirical QM and hybrid-potential calculations. In all
of their calculations, the sodium ion was treated as a
point charge, whereas in the hybrid-potential calcula-
tions, the ethyl and CH2OH groups were in the MM and
QM regions, respectively, and all the charges of the MM
atoms, apart from the sodium ion, were set to zero. The
proton affinities and DPEs were calculated for propanol
with six different positions of the sodium ion and the
RMS differences in these values between the hybrid-
potential and the full QM results were reported for a
variety of link-atom and hybrid-orbital models. For the
link-atom scheme in which electrostatic interactions
were calculated between the link atom and the MM
atoms, they obtained RMS deviations of about 22 and

Table 3. The dipole moments of a set of 12 test molecules calculated
with different methods. Columns 2 (3-21G) and 8 (6-31G*) are the
full QM results, whereas columns 3–7 and columns 9–13 are hybrid-
potential results obtained with the HF/3-21G and HF/6-31G* QM
methods, respectively. Parts of the molecule treated as MM in the

hybrid-potential calculations are given in italics. The bottom of the
table lists the root-mean-square (RMS) errors for the dipoles and
the geometries of the link-atom results with respect to the full QM
calculations. Figures in bold indicate the best values in each row.
Dipoles are in debye and geometries are in angstrom

Molecule 3-21G LA LA0 LA0
0 LAg(4,0) LAg(4,3) 6-31G* LA LA0 LA0

0 LAg(4,0) LAg(4,3)

CH3CH2ðCH2Þ2NH- 10.30 12.24 11.67 11.62 11.25 11.23 10.43 12.23 11.72 11.65 11.36 11.33

CH3CH2(CH2Þ2NH2 1.33 1.59 1.27 1.48 1.37 1.44 1.43 1.71 1.60 1.38 1.48 1.55
CH3CH2(CH2Þ2 NHþ

3 9.27 9.72 9.86 9.79 10.04 10.03 9.36 9.72 9.87 9.90 10.11 10.12
CH3CH2CH2COO- 39.99 40.10 40.13 40.07 40.08 40.04 39.98 40.10 40.07 40.13 40.07 40.04

CH3CH2CH2COOH 1.48 1.58 1.90 1.53 1.62 1.51 1.61 1.68 1.66 2.02 1.76 1.65

CH3CH2CH2NH- 42.70 41.14 40.97 40.93 40.81 40.82 40.34 41.07 40.91 40.88 40.78 40.80
CH3CH2CH2NH2 1.32 1.40 1.55 1.35 1.36 1.34 1.40 1.47 1.45 1.64 1.48 1.44

CH3CH2CH2NHþ
3 43.11 43.59 43.61 43.72 43.71 43.96 43.29 43.73 43.76 43.65 43.92 43.89

CH3CH2CH2O- 6.33 8.92 8.48 8.24 7.98 7.93 6.43 8.72 8.22 8.24 7.95 7.89

CH3CH2CH2OH 1.86 1.88 2.29 1.93 2.04 1.96 1.65 1.62 1.66 2.03 1.78 1.69
CH3CH2CH2OHþ

2 39.96 40.43 40.47 40.43 40.54 40.49 40.88 41.45 40.09 40.06 40.22 40.19
CH3CH2CH3 0.04 0.69 0.41 0.43 0.22 0.24 0.07 0.70 0.44 0.40 0.22 0.24
RMS error on dipole 0.00 1.08 0.95 0.89 0.85 0.85 0.00 0.92 0.73 0.74 0.64 0.62

RMS error on geometry 0.00 0.08 0.06 0.09 0.08 0.14 0.00 0.04 0.06 0.10 0.06 0.07
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20 kJ mol�1 for the proton affinities and DPEs, respec-
tively. For a hybrid-orbital method of LSCF type, they
got values of about 33 and 34 kJ mol�1.

We repeated their tests using 20 sodium ion positions
which were generated randomly by choosing distances at
a minimum (maximum) of 2.5 (5.0) Å from any atom. If
all the charges on the MM atoms are zeroed (except for
the sodium), the RMS deviations are about 15 and
16 kJ mol�1 for the proton affinities and DPEs, respec-
tively, in rough agreement with the values of Reuter et al.
For our LA0 model, in which only the charges on the
CH2 group adjacent to the QM region are set to zero,
the deviations are about 7 kJ mol�1 (proton affinities)
and 27 kJ mol�1 (DPEs). The values for the models with
Gaussian smoothing are a reasonable 29 and 5 kJ mol�1

for the LAg(4,0) model and 24 and 6 kJ mol�1 for the
LAg(4,3) model.

3.5 Alanine dipeptide

The alanine dipeptide is composed of an alanyl residue
with an acetyl group on the N-terminus and an
N -methylamine group on the C-terminus. It was used
as a model system by Philipp and Friesner [12] for

the parameterization of their hybrid-orbital QM/MM
model. Of the six different conformational minima that
the dipeptide possesses, they were able to find four with
their hybrid-potential model and they obtained good
agreement for the relative energies of the structures.

For our calculations, we started with six structures
that had been optimized with full QM calculations at the
HF/6-31G** and HF/3-21G levels. We then tested two
QM/MM partitionings, one in which the system was
divided at the N–Ca bond of the alanine (14 QM atoms)
and the second where it was divided at the Ca–carbonyl
C bond of the alanine (eight QM atoms). In each case
the first atom of the bond defines the limit of the QM
region, whereas the second atom of the bond marks the
start of the MM region. Philipp and Friesner only tested
the first partitioning. All our hybrid-potential calcula-
tions were done with the HF/3-21G QM method.
Results for the energies and the structures of the six
conformers obtained with the various methods are
presented in Tables 5 and 6.

Table 5 lists the values for the LA model even though
the optimized bond length at the QM/MM interface is in
poor agreement with the reference QM results. Thus, the
length of the N–Ca bond optimizes to around 1.70 Å,
compared to a reference value of around 1.45 Å, when

Molecule 3-21G LAgð4; 0Þ LAgð4; 3Þ 6-31G* LAgð4; 0Þ LAgð4; 3Þ

CH3CH2O- )1752.2 16.8 )10.3 )1696.3 18.6 )7.7

CH3CH2CH2O- )1746.0 13.1 )1.9 )1691.7 13.9 )0.6
CH3CH2CH2O- )12.3 )20.5 )7.8 )9.6

CH3CH2CH2CH2O- )1745.5 9.7 1.0 )1690.5 8.9 0.6
CH3CH2CH2CH2O- 0.2 )1.5 1.5 )0.1
CH3CH2CH2CH2O- )9.6 )18.3 )6.4 )14.7

CH3CH2OH )876.7 47.0 27.1 )817.6 51.0 29.3

CH3CH2CH2OH )882.5 22.9 9.5 )824.0 23.5 10.2
CH3CH2CH2OH 36.5 33.5 40.3 36.5

CH3CH2CH2CH2OH )884.5 12.1 4.8 )826.9 13.1 5.6
CH3CH2CH2CH2OH 14.8 13.5 16.3 14.9
CH3CH2CH2CH2OH 37.6 32.1 43.6 36.3

CH3CH2COO- )1571.5 14.0 )2.7 )1534.0 17.0 1.1

CH3CH2CH2COO- )1568.9 10.0 )0.3 )1532.4 9.9 0.3
CH3CH2CH2COO- )1.7 )3.6 2.7 1.0

CH3CH2NH- )1862.0 )18.7 )9.9 )1808.0 15.6 )8.1

CH3CH2CH2NH- )1842.8 0.1 )12.7 )1797.6 8.8 )4.2
CH3CH2CH2NH- )24.4 )25.9 )14.1 )14.7

CH3CH2CH2CH2NH- )1857.0 7.9 0.4 )1803.6 7.4 0.0
CH3CH2CH2CH2NH- )0.2 )1.8 0.8 )0.8
CH3CH2CH2CH2NH- )7.7 )15.1 )5.1 )12.5

CH3CH2NH2 )1004.8 41.7 21.2 )968.2 41.6 )20.5

CH3CH2CH2NH2 )1006.2 22.3 6.7 )972.6 25.2 10.2
CH3CH2CH2NH2 23.9 28.0 27.2 31.1

CH3CH2CH2CH2NH2 )1012.5 11.4 4.3 )976.9 11.5 4.6
CH3CH2CH2CH2NH2 13.1 11.8 13.7 12.6
CH3CH2CH2CH2NH2 34.5 26.4 35.5 27.7

Table 4. Proton affinities for several molecules calculated as the
differences in energy between the geometry-optimized protonated
and deprotonated forms. Column 1 shows the deprotonated form
of the molecule with the part of the molecule treated as MM in the
hybrid-potential calculations in italics. Columns 2 and 5 are the

pure QM results at the HF/3-21G and HF/6-31G
 levels, respec-
tively. Columns 3–4 and 6–7 list the hybrid-potential results but the
values given are the differences with respect to the full QM results.
Energies are in kilojoules per mole
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the system is partitioned at this bond, whereas, for the
second partitioning, the reverse behavior is observed,
with the Ca–C having a distance of around 1.42 Å
compared to the reference value of around 1.53 Å. The
LA model finds only three out of six conformers for the
N–Ca partitioning and the relative stability of C5 and
C7ax are reversed compared to the full QM or MM
OPLS-AA results. In contrast, the model does much
better for the second partitioning, finding five out of six
conformers, four of them with good energies.

Both the Gaussian link-atom models give good bond
lengths for the QM–MM bond at the interface no matter
which partitioning is used. Of the two models, LAg(4,0)
does better overall. For the first partitioning it finds five
conformers out of six, although the aL and a0 conformers
do not have the correct relative energies, whereas it finds
four out of six for the second partitioning. The LAg(4,3)
model is less good. It finds only three conformers out of
six for the first partitioning and, although it finds five
different conformers for the second partitioning, the
stability of the C5 and C7eq conformers is reversed. In
general, both models reproduce well the geometries of
the conformers they find. This can be seen for the
LAg(4,0) model from Table 6. For the LAg(4,3) model,
this can be verified by taking the optimized geometries
and performing single-point energy calculations with the
HF/6-31G** QM method. Thus, for example, the QM
energies of the C5, C7eq and C7ax conformers obtained
with the LA*g(4,3) model are 5.72, 0.00 and 11.49 kJ
mol�1, respectively, in good agreement with the full QM
results. Similar calculations on the aL and a0 structures,
however, do not reverse their relative stabilities although
the energy difference is reduced to 6 from 12 kJ mol�1.

We also tested both partitionings of the dipeptide
with the LAg(4,0) model and the HF/6-31G* QM
method. Four conformers were found in each case
and the energies were in error by between 0.04 and
2.50 kJ mol�1 per structure compared to the full
HF 6-31G* results. These errors and those obtained
with the HF/3-21G QM method are comparable to those
found by Philipp and Friesner. It should be noted
that their model, like some of our models and the OPLS-
AA calculations, found neither the aL nor the b2 con-
formers.

3.6 Alanine tetrapeptide

The alanine tetrapeptide consists of three alanyl residues
along with an N-terminal acetyl group and a C-terminal
N -methylamine group. Extensive QM calculations have
been performed on this system by Beachy et al. [36] and,
like the dipeptide, it was used by Philipp and Friesner
for testing their hybrid-potential model [12]. As for the
dipeptide, we tested two partitions with our hybrid-
potential model, one in which the system was cut at the
central N–Ca bond (24 QM atoms) and the second at
which the cut was at the central Ca–C bond (18 QM
atoms). The HF/3-21G QM method was used for all our
calculations.

The energetic and structural results we obtained on the
ten lowest-energy conformers of the tetrapeptide are
shown in Tables 7 and 8. As for the dipeptide, the LA
model gives geometries about the QM/MM interface that
are distorted but we nevertheless show the energies it gives
in Table 7. The two Gaussian link-atom methods are

Table 5. Energies for different conformations of the alanine di-
peptide relative to the C7eq form. Columns 2 and 3 refer to the full
QM results with the HF/6-31G** and HF/3-21G QM methods,
respectively. All the link-atom calculations were done with the HF/
3-21G QM method. The superscript� indicates calculations in which
the dipeptide is partitioned at the N–Ca bond, whereas an asterisk

indicates partitioning at the Ca–C bond. The last column lists the
full MM results. The values in parentheses after the energies are
the RMS coordinate deviations for the heavy atoms with respect to
the reference HF/6-31G** structures. Energies are in kilojoules per
mole and geometries are in angstrom

Conf. 6-31G** 3-21G LA� LA�
g(4,0) LA�

g(4,3) LA* LA*g(4,0) LA*g(4,3) OPLS-AA

C5 1.67 4.39 (0.14) 14.64 (0.15) 4.60 (0.09) !C7eq 5.10 (0.15) 3.93 (0.10) )2.80 (0.10) 5.40 (0.12)
C7eq 0.00 0.00 (0.10) 0.00 (0.20) 0.00 (0.08) 0.00 (0.23) 0.00 (0.07) 0.00 (0.08) 0.00 (0.05) 0.00 (0.08)
C7ax 11.82 11.97 (0.04) 8.62 (0.14) 13.35 (0.10) 10.50 (0.19) 10.42 (0.09) 11.55 (0.07) 18.54 (0.08) 10.63 (0.07)
b2 10.80 15.40 (0.06) !C7eq !C7eq !C7eq !C7eq !C7eq !C7eq !C7eq
aL 19.93 25.19 (0.09) !C7eq 33.18 (0.16) !C7ax 40.38 (0.14) !C7ax 42.93 (0.21) !C7ax
a0 24.43 31.05 (0.08) !C5 28.16 (0.22) 27.70 (0.21) 28.87 (0.20) 27.70 (0.19) 30.29 (0.19) 26.94 (0.21)

Table 6. Torsional / and w angles for different conformations of the alanine dipeptide calculated with QM, MM and the best hybrid-
potential models of Table 5. The angles are in degrees

6-31G** 3-21G OPLS-AA LA�
g(4,0) LA*g(4,0)

/ w / w / w / w / w

C5 )157.9 160.3 )167.7 170.6 )143.7 161.5 )159.1 167.1 )147.3 160.0
C7eq )85.8 78.5 )86.1 68.7 )80.3 67.8 )83.1 70.7 )82.5 70.5
C7ax 75.8 )56.5 76.8 )56.0 68.5 )55.1 70.6 )63.0 70.1 )56.3
b2 )128.6 23.2 )131.4 28.9 ! C7eq ! C7eq ! C7eq
aL 66.9 29.7 66.4 31.8 ! C7ax 56.7 48.2 ! C7ax
a0 )166.4 )40.1 )176.8 )43.8 )157.3 )62.5 )158.9 )65.9 )156.3 )59.9
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better than the LA model, with the LAg(4,3) and the
LAg(4,0) models being best for the first and second par-
titionings, respectively. The values of the RMS energy
differences that we obtain with our link-atom models are
higher but compare favorably with those obtained by
Philipp and Friesner (around 5.4 kJ mol�1) and

are, in any case, similar in magnitude for all our models
(except for LA�) to those of the full QM HF/3-21G
(6.55 kJ mol�1) and OPLS-AA (7.07 kJ mol�1) results.
Torsional angles for the ten conformers are given in
Table 8 for the best hybrid model compared to full
ab initio and full MM calculations. From the RMS

Table 7. Energies for the ten lowest-energy conformations of the
alanine tetrapeptide. Columns 2 and 3 refer to the full QM results
with the LMP2 [36] and the HF/3-21G QM methods, respectively.
All the link-atom calculations were done with the HF/3-21G QM
method. The superscript � indicates calculations in which the
dipeptide is partitioned at the N–Ca bond, whereas an asterisk
indicates partitioning at the Ca–C bond. The last column lists the
full MM results. All energies (other than those of the LMP2

reference) are obtained by minimizing the RMS energy difference
between the calculated and the LMP2 reference structures (see Ref.
[12] for details). The last row gives the overall RMS energy differ-
ence for all structures. The values in parentheses after the energies
are the RMS coordinate deviations for the heavy atoms with respect
to the reference LMP2 structures. Energies are in kilojoules per mole
and geometries are in angstrom

Conf. /1 w1 /2 w2 /3 w3

1 )167.4 ()158.5) 170.9 (163.5) )167.9 ()157.8) 171.0 (163.4) )167.7 ()156.2) 170.3 (160.8)
)143.9 164.5 )142.4 166.3 )141.6 163.8
)144.6 165.1 )146.2 163.4 )157.0 160.2

2 )166.9 ()158.6) 170.7 (163.9) )167.0 ()154.9) 169.2 (158.1) )85.6 ()86.0) 70.0 (79.2)
)142.6 162.2 )141.3 164.1 )81.0 70.2
)144.5 164.5 )143.9 159.8 )86.3 78.9

3 )82.4 ()81.7) 81.3 (93.4) 75.8 (76.3) )50.5 ()53.4) )76.1 ()80.4) 84.2 (85.1)
)78.9 74.0 71.8 )48.8 )73.5 76.0
)90.5 59.8 67.5 )61.7 )66.3 126.2

4 )166.6 ()156.9) 170.6 (161.3) )87.2 ()88.8) 68.8 (83.5) )167.0 ()156.0) 167.0 (152.8)
)143.0 162.1 )83.8 72.9 )136.2 160.2
)140.8 163.3 )82.9 76.2 )160.5 146.5

5 )167.1 ()157.2) 176.6 (170.0) )100.3 ()76.2) 13.5 ()19.6) )166.2 ()153.8) 169.8 (160.8)
)139.8 160.0 )73.4 )25.8 )142.6 157.5
)138.5 160.3 )74.7 )27.3 )147.2 163.7

6 )90.4 ()89.0) 60.6 (67.3) 56.3 (63.0) 26.1 (24.3) 177.3 ()165.0) 162.0 (149.8)
)89.5 62.1 68.4 )54.3 )89.0 142.9
)87.7 57.5 57.3 22.7 )180.0 145.6

7 57.5 (56.0) )165.8 ()158.5) )86.0 ()93.0) 69.1 (63.8) )164.8 ()163.3) )55.1 ()50.0)
57.3 )150.3 )87.5 57.3 )154.7 )57.0
55.1 )150.2 )87.6 64.7 )166.8 )52.3

8 71.4 (72.8) )69.9 ()70.5) )56.8 ()58.1) 139.6 (134.7) 64.7 (62.0) 18.0 (25.7)
69.1 )55.2 )63.6 98.2 64.0 34.3
68.8 )51.8 )64.0 108.8 62.7 30.2

9 74.3 (75.7) )55.6 ()59.5) 74.2 (76.1) )54.7 ()55.3) 74.2 (75.5) )56.8 ()53.0)
67.8 )53.6 67.3 )52.0 67.7 )52.9
66.7 )56.2 67.8 )53.7 76.2 )50.3

10 60.7 (62.5) 26.8 (29.0) 61.4 (65.1) 24.4 (20.6) 72.3 (73.8) )56.4 ()51.5)
60.6 )6.6 57.8 44.7 71.4 )50.8

)64.3 87.9 55.0 49.1 70.4 )71.2

Table 8. Torsional angles of the alanine tetrapeptide. For each
conformer, the first line has the full QM HF/3-21G values along
with the HF/6-31G** values in parentheses, the second line has the

OPLS-AA results and the third one the results with the LA*g(4,0)
model. The structures optimized at the HF/6-31G** level were ta-
ken from Ref. [36]. The angles are in degrees

Conf. LMP2 [35] 3-21G LA� LA�
g(4,0) LA�

g(4,3) LA* LA*g(4,0) LA*g(4,3) OPLS-AA

1 11.34 15.38 (0.13) 25.40 (0.20) 10.38 (0.16) !4 11.52 (0.33) 11.00 (0.25) 5.61 (0.23) 12.59 (0.27)
2 11.88 13.14 (0.22) 12.30 (0.22) 4.35 (0.26) )0.13 (1.69) 11.28 (0.27) 7.03 (0.25) 3.10 (0.22) 11.17 (0.23)
3 0.00 )7.05 (0.20) )14.35 (0.32) )3.01 (0.22) )6.02 (0.34) )5.47 (0.24) )9.46 (0.28) )4.35 (0.28) )5.61 (0.29)
4 17.28 21.31 (0.50) 16.78 (0.52) 8.74 (0.41) 14.23 (0.35) 15.90 (0.28) 16.02 (0.36) 13.47 (0.48) 15.90 (0.17)
5 16.23 21.79 (0.37) !4 9.37 (0.93) 18.49 (0.80) 27.15 (0.32) 25.40 (0.30) 26.36 (0.42) 19.96 (0.21)
6 9.20 )6.57 (0.43) 7.03 (0.54) 9.75 (0.58) 8.87 (0.71) 17.03 (0.51) 11.25 (0.55) 11.72 (0.60) )4.60 (0.73)
7 24.14 26.92 (0.13) 25.40 (0.34) 19.12 (0.25) 25.48 (0.31) 21.65 (0.30) 21.13 (0.30) 18.24 (0.27) 18.24 (0.25)
8 17.41 22.11 (0.23) 16.02 (0.58) 20.13 (0.48) 24.48 (0.64) 20.90 (0.41) 18.91 (0.41) 12.09 (0.45) 28.33 (0.42)
9 28.95 26.92 (0.08) 17.66 (0.16) 37.99 (0.12) 20.13 (0.16) 26.15 (0.13) 20.88 (0.12) 33.10 (0.11) 26.34 (0.12)

10 29.25 27.56 (0.13) 38.41 (0.16) 44.73 (0.76) 41.76 (0.16) 15.40 (1.08) 39.29 (0.38) 42.13 (0.81) 38.83 (0.73)
RMS 0.00 6.55 8.03 7.03 6.36 6.66 5.98 6.65 7.07
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geometries in Table 7 and the torsional angles in Table 8,
conformers 1–3, 7 and 9 are well reproduced by most of
the models. The geometries of conformers 4–6, 8 and 10
are less accurate although the full QM HF/3-21G method
also poorly reproduces conformers 4–6 and theOPLS-AA
method does badly with conformers 6, 8 and 10.

4 Conclusions

In this paper we have tested a link-atom method for
treating covalent bonds between atoms at the QM/MM
interface of an ab initio QM/MM hybrid potential and
find that it produces results that are not markedly
inferior to those of more sophisticated techniques. The
method itself is identical to that reported previously for
use with semiempirical QM/MM potentials except that
the electrostatic interactions between the QM and MM
atoms at the interface are calculated differently. We
emphasize that our tests were performed without
modification of any of the parameters required by the
separate QM or MM potentials and that the link-atom
method itself introduces only three extra parameters (the
bond length between the QM interface atom and the link
atom and the widths of the Gaussian charge distribu-
tions for the MM atoms at the interface).

How to deal with covalent bonds at the QM/MM
interface is only one part in the formulation of the
interactions between the different regions of a hybrid
potential. Whereas the current interaction models for
semiempirical QM/MM potentials are probably satis-
factory (at least, for the semiempirical QM methods that
are now available), it seems to us important that further
research on the ‘‘link-atom problem’’ in the ab initio
case be supplemented with improvements in other as-
pects of the hybrid potential. Areas requiring attention
include optimization of QM algorithms so that the size
of the QM region can be increased, a better description
of the charge distribution of the MM atoms (including
polarization effects) and a more satisfactory model for
the short-range and van der Waals interactions between
the QM and MM atoms. Such work is ongoing in our
laboratory and will be reported in due course.
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